Extensions 1→N→G→Q→1 with N=C6 and Q=Q8xC32

Direct product G=NxQ with N=C6 and Q=Q8xC32
dρLabelID
Q8xC32xC6432Q8xC3^2xC6432,732

Semidirect products G=N:Q with N=C6 and Q=Q8xC32
extensionφ:Q→Aut NdρLabelID
C6:(Q8xC32) = C3xC6xDic6φ: Q8xC32/C3xC12C2 ⊆ Aut C6144C6:(Q8xC3^2)432,700

Non-split extensions G=N.Q with N=C6 and Q=Q8xC32
extensionφ:Q→Aut NdρLabelID
C6.1(Q8xC32) = C32xDic3:C4φ: Q8xC32/C3xC12C2 ⊆ Aut C6144C6.1(Q8xC3^2)432,472
C6.2(Q8xC32) = C32xC4:Dic3φ: Q8xC32/C3xC12C2 ⊆ Aut C6144C6.2(Q8xC3^2)432,473
C6.3(Q8xC32) = C4:C4xC3xC9central extension (φ=1)432C6.3(Q8xC3^2)432,206
C6.4(Q8xC32) = C4:C4xHe3central extension (φ=1)144C6.4(Q8xC3^2)432,207
C6.5(Q8xC32) = C4:C4x3- 1+2central extension (φ=1)144C6.5(Q8xC3^2)432,208
C6.6(Q8xC32) = Q8xC3xC18central extension (φ=1)432C6.6(Q8xC3^2)432,406
C6.7(Q8xC32) = C2xQ8xHe3central extension (φ=1)144C6.7(Q8xC3^2)432,407
C6.8(Q8xC32) = C2xQ8x3- 1+2central extension (φ=1)144C6.8(Q8xC3^2)432,408
C6.9(Q8xC32) = C4:C4xC33central extension (φ=1)432C6.9(Q8xC3^2)432,514

׿
x
:
Z
F
o
wr
Q
<